\(\int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx\) [221]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 81 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {a^4 \log (\sin (c+d x))}{d}+\frac {4 a^4 \sin (c+d x)}{d}+\frac {3 a^4 \sin ^2(c+d x)}{d}+\frac {4 a^4 \sin ^3(c+d x)}{3 d}+\frac {a^4 \sin ^4(c+d x)}{4 d} \]

[Out]

a^4*ln(sin(d*x+c))/d+4*a^4*sin(d*x+c)/d+3*a^4*sin(d*x+c)^2/d+4/3*a^4*sin(d*x+c)^3/d+1/4*a^4*sin(d*x+c)^4/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2786, 45} \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {a^4 \sin ^4(c+d x)}{4 d}+\frac {4 a^4 \sin ^3(c+d x)}{3 d}+\frac {3 a^4 \sin ^2(c+d x)}{d}+\frac {4 a^4 \sin (c+d x)}{d}+\frac {a^4 \log (\sin (c+d x))}{d} \]

[In]

Int[Cot[c + d*x]*(a + a*Sin[c + d*x])^4,x]

[Out]

(a^4*Log[Sin[c + d*x]])/d + (4*a^4*Sin[c + d*x])/d + (3*a^4*Sin[c + d*x]^2)/d + (4*a^4*Sin[c + d*x]^3)/(3*d) +
 (a^4*Sin[c + d*x]^4)/(4*d)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2786

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Dist[1/f, Subst[I
nt[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {(a+x)^4}{x} \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {\text {Subst}\left (\int \left (4 a^3+\frac {a^4}{x}+6 a^2 x+4 a x^2+x^3\right ) \, dx,x,a \sin (c+d x)\right )}{d} \\ & = \frac {a^4 \log (\sin (c+d x))}{d}+\frac {4 a^4 \sin (c+d x)}{d}+\frac {3 a^4 \sin ^2(c+d x)}{d}+\frac {4 a^4 \sin ^3(c+d x)}{3 d}+\frac {a^4 \sin ^4(c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {a^4 \log (\sin (c+d x))}{d}+\frac {4 a^4 \sin (c+d x)}{d}+\frac {3 a^4 \sin ^2(c+d x)}{d}+\frac {4 a^4 \sin ^3(c+d x)}{3 d}+\frac {a^4 \sin ^4(c+d x)}{4 d} \]

[In]

Integrate[Cot[c + d*x]*(a + a*Sin[c + d*x])^4,x]

[Out]

(a^4*Log[Sin[c + d*x]])/d + (4*a^4*Sin[c + d*x])/d + (3*a^4*Sin[c + d*x]^2)/d + (4*a^4*Sin[c + d*x]^3)/(3*d) +
 (a^4*Sin[c + d*x]^4)/(4*d)

Maple [A] (verified)

Time = 1.73 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.70

method result size
derivativedivides \(-\frac {a^{4} \left (-\frac {1}{4 \csc \left (d x +c \right )^{4}}+\ln \left (\csc \left (d x +c \right )\right )-\frac {4}{\csc \left (d x +c \right )}-\frac {3}{\csc \left (d x +c \right )^{2}}-\frac {4}{3 \csc \left (d x +c \right )^{3}}\right )}{d}\) \(57\)
default \(-\frac {a^{4} \left (-\frac {1}{4 \csc \left (d x +c \right )^{4}}+\ln \left (\csc \left (d x +c \right )\right )-\frac {4}{\csc \left (d x +c \right )}-\frac {3}{\csc \left (d x +c \right )^{2}}-\frac {4}{3 \csc \left (d x +c \right )^{3}}\right )}{d}\) \(57\)
risch \(-i a^{4} x -\frac {13 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}}{16 d}-\frac {13 a^{4} {\mathrm e}^{-2 i \left (d x +c \right )}}{16 d}-\frac {2 i a^{4} c}{d}+\frac {a^{4} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}+\frac {5 a^{4} \sin \left (d x +c \right )}{d}+\frac {a^{4} \cos \left (4 d x +4 c \right )}{32 d}-\frac {a^{4} \sin \left (3 d x +3 c \right )}{3 d}\) \(120\)

[In]

int(cos(d*x+c)*csc(d*x+c)*(a+a*sin(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

-1/d*a^4*(-1/4/csc(d*x+c)^4+ln(csc(d*x+c))-4/csc(d*x+c)-3/csc(d*x+c)^2-4/3/csc(d*x+c)^3)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.89 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {3 \, a^{4} \cos \left (d x + c\right )^{4} - 42 \, a^{4} \cos \left (d x + c\right )^{2} + 12 \, a^{4} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) - 16 \, {\left (a^{4} \cos \left (d x + c\right )^{2} - 4 \, a^{4}\right )} \sin \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)*(a+a*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

1/12*(3*a^4*cos(d*x + c)^4 - 42*a^4*cos(d*x + c)^2 + 12*a^4*log(1/2*sin(d*x + c)) - 16*(a^4*cos(d*x + c)^2 - 4
*a^4)*sin(d*x + c))/d

Sympy [F]

\[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=a^{4} \left (\int \cos {\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int 4 \sin {\left (c + d x \right )} \cos {\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int 6 \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int 4 \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int \sin ^{4}{\left (c + d x \right )} \cos {\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)*(a+a*sin(d*x+c))**4,x)

[Out]

a**4*(Integral(cos(c + d*x)*csc(c + d*x), x) + Integral(4*sin(c + d*x)*cos(c + d*x)*csc(c + d*x), x) + Integra
l(6*sin(c + d*x)**2*cos(c + d*x)*csc(c + d*x), x) + Integral(4*sin(c + d*x)**3*cos(c + d*x)*csc(c + d*x), x) +
 Integral(sin(c + d*x)**4*cos(c + d*x)*csc(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.84 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {3 \, a^{4} \sin \left (d x + c\right )^{4} + 16 \, a^{4} \sin \left (d x + c\right )^{3} + 36 \, a^{4} \sin \left (d x + c\right )^{2} + 12 \, a^{4} \log \left (\sin \left (d x + c\right )\right ) + 48 \, a^{4} \sin \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)*(a+a*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

1/12*(3*a^4*sin(d*x + c)^4 + 16*a^4*sin(d*x + c)^3 + 36*a^4*sin(d*x + c)^2 + 12*a^4*log(sin(d*x + c)) + 48*a^4
*sin(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.85 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {3 \, a^{4} \sin \left (d x + c\right )^{4} + 16 \, a^{4} \sin \left (d x + c\right )^{3} + 36 \, a^{4} \sin \left (d x + c\right )^{2} + 12 \, a^{4} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) + 48 \, a^{4} \sin \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)*csc(d*x+c)*(a+a*sin(d*x+c))^4,x, algorithm="giac")

[Out]

1/12*(3*a^4*sin(d*x + c)^4 + 16*a^4*sin(d*x + c)^3 + 36*a^4*sin(d*x + c)^2 + 12*a^4*log(abs(sin(d*x + c))) + 4
8*a^4*sin(d*x + c))/d

Mupad [B] (verification not implemented)

Time = 9.31 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.46 \[ \int \cot (c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {16\,a^4\,\sin \left (c+d\,x\right )}{3\,d}-\frac {a^4\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )}{d}+\frac {a^4\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {7\,a^4\,{\cos \left (c+d\,x\right )}^2}{2\,d}+\frac {a^4\,{\cos \left (c+d\,x\right )}^4}{4\,d}-\frac {4\,a^4\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )}{3\,d} \]

[In]

int((cos(c + d*x)*(a + a*sin(c + d*x))^4)/sin(c + d*x),x)

[Out]

(16*a^4*sin(c + d*x))/(3*d) - (a^4*log(1/cos(c/2 + (d*x)/2)^2))/d + (a^4*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x
)/2)))/d - (7*a^4*cos(c + d*x)^2)/(2*d) + (a^4*cos(c + d*x)^4)/(4*d) - (4*a^4*cos(c + d*x)^2*sin(c + d*x))/(3*
d)